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NOMENCLATURE

L = length, inch

r = radius, inch

C = stress form coefficient

N = probability range factor

K = probability  range and sample factor

T = torque load, kip-inch

P = tension load, kips

p = probability of failure

F = stress, ksi

SF =  conventional safety factor

g = load gain

n = number of samples

Q = tolerance limit

µ = statistical mean, ksi

η = coefficient of variation, σ/µ

σ = standard deviation, ksi

ϕ = disparity coefficient

0.94 = 0.9999 probability

Subscripts

A = applied stress variable

R = resistive stress

D = uncertainty design variable design

T = test derived variable

ty = tensile yield

tu = tensile ultimate

o = midzone stress

x,y,z = normal stresses

xy, xz, yz = shear stresses



TECHNICAL PAPER

ILLUSTRATED STRUCTURAL APPLICATION OF UNIVERSAL
FIRST-ORDER RELIABILITY METHOD

I.  INTRODUCTION

As in many technical papers, brief narratives on structural first-order reliability methods have been
published1 2 3 emphasizing the derivation, justification, and improvements over prevailing concepts but
with no appreciation for its application. This supplementary document presents the method in its final
status, and illustrates user-friendly techniques and solutions in a variety of semistatic (static and dynamic
imposed loads) problems for the understanding by structural analysts. Statistical data are characterized,
existing analytical techniques are incorporated, models are developed, and reliability criterion is established
to construct the first-order reliability method.

Structural improvements which are necessary to support affordable access-to-space are in the
materials, joints, reliability, and the design system process. Reliability improvement provided the widest
range of benefits with the least committed resources. This first-order reliability method was developed
because it offered the best approach to surmount deterministic inherent deficiencies and to accomplish them
within prevailing cultures and practices. It is the simplest, most expedient, and the most developed and
familiar of all reliability methods. Because first-order reliability is restricted to normal probability
distributions, the proposed approach of normalizing all skewed distributions leads to the universal
adoption of the first-order reliability method. This pragmatic technique of using only the engaged half of
the distribution data to construct a symmetrical (normal) distribution is seemingly sound. Undue difference
between the actual and the normalized distribution may be treated similar to other modeling design errors.

Both deterministic and reliability methods are shown to achieve structural safety by sizing
structural forms or elements through specified ratios of resistive to applied stresses. The deterministic
method specifies the ratio by an arbitrarily selected safety factor. The proposed method derives the
reliability design factor from specified reliability criteria. Both applications are illustrated through a
structural design procedure outlined in figure 1, to provide an orderly phasing and development process of
statistical data and design parameters, and to explore their relationship and control over reliability.
Reliability selection criteria are briefly addressed.

Scope 
problem

Specify: 
  environments,
  envelope size

Shape envelope
  to minimize  
  environments  

Develop  statistic
  data; loads, mat'l
  manufacture

Model
  Stress response
  failure criterion

Size structure
    deterministic 
    method

Determine statistical
  parameters of
  combined stresses

Size structure 
   first order reliability
   method

1
2 3 4

5 6 7 8

Figure 1.  Structural design system process.

This study has been limited to semistatic structures that comprise over 60 percent of the
aerostructural weight. Pertinent excerpts from earlier concept developments are included for completeness,
and published standard methods are referenced. Though lacking eloquence, it is hoped the visibility of
analytical illustrations and depth of discussions and techniques are sufficient to provide the structural
deterministic community and the topic novice the understanding of its application and motives for
improvements.
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II.  FAILURE CONCEPT

Central to the appreciation of the proposed universal first-order reliability method is a fundamental
understanding of the failure concept and its necessary conditions. All observed and measured phenomena
may be reduced to probability distributions. When applied stress demand, FA, and resistive stress
capability, FR, are defined by probability distributions, failure occurs when the tails of the two
distributions overlap, as shown in figure 2. Their tail-overlap area suggests the probability that a weak
resistive material will encounter an excessively applied stress to cause failure. The probability of failure is
reduced as their tail overlap area decreases by increasing the difference of the resistive and applied stress
means, µR–µA, and as their distribution natural shapes decrease.

stress

applied
stress
(demand)

resistive
stress
(capability)

tail 
overlap

µRµA

σA

µR - µΑ

Figure 2.  Structural failure concept.

A.  Controlling Features

The difference between the applied- and resistive-stress distribution means is the only designer
control (active) parameter of the area of overlapped tails. Tail shapes are defined by passive (firm) design
variables which are uniquely fixed by their natural scatter around their distribution means. In a given
structural form having common material properties, the resistive-stress distribution shape may be constant
through all regions. However, local applied-stress distribution shapes may vary throughout the structure
due to local abrupt changes in geometry, loads, metallurgy, temperature, etc. Therefore, any change in
applied-stress distribution shape without a corresponding change in the means will change the probability
of failure in that region, resulting in nonuniformly reliable structures, and worse, unsuspected weak
regions.

In engineering applications, these shapes are modeled by distribution functions to estimate the
probability of a desired value for an assigned range of distribution. As shapes become more complex,
probability distribution types and complexities increase, which prolongs lead time, and intensifies labor,
skills, and training. The normal distribution shape is the simplest, best developed, most known, and
expedient. Its distribution is symmetrical about the mean, and it is completely characterized by two
variables.

As in most engineering applications, only the distribution side producing the worst-case design
problem is of any interest, as was clearly demonstrated by the failure concept of figure 2. Only data from
the right half of the applied-stress distribution (greatest demand) are engaged with data from only the left
side (weakest capability) of the resistive stress. Data from the other two disengaged-distribution halves are
irrelevant to the failure concept. This inherent observation, as well as experience with related data shapes
and the central limit theory, lead the author to presume that all probability distributions associated with
semistatic structural loads, stresses, and materials may be made universally symmetrical by constructing a
mirror image of the engineering engaged side about the peak frequency value of the distribution. This
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constituted symmetrical distribution entitles its adaptation to all practical normal distribution techniques and
advantages.

The universally normalized distribution is characterized by two parameters, the mean and the
standard deviation. The mean is assumed by

µ = peak frequency value . (1)

The variance is calculated from the constructed symmetrical distribution,

   
σ 2 =

Σ (xi–µ )2

Σ n–1
  , (2)

from which the standard deviation is
   

σ =
Σ (xi–µ )2

Σ n–1

1
2
  . (3)

A useful nondimensional parameter that denotes the relative natural scatter of data is the coefficient of
variation (cov)

  η = σ
µ   . (4)

The universal transformation of random variables to normal distributions simplifies a wide range of
structural interfaces, applications, and design specifications. Should an inconsistency appear between
normalized and another “assumed” distribution, the normalizing approach is pragmatically preferred and
the difference is treated as all other design modeling errors. Normal distribution is easiest to learn and
simplest to apply, and it is pivotal to the development of the universal first-order reliability method.

B.  Tolerance Limits

An extensively practiced feature of normal distribution by loads, stress, and materials disciplines is
the specification of a design parameter through the statistical characterization of the tolerance limit.
Tolerance limits4 specify the mean and the probability distribution range on either left or right side of the
mean. It is specified by

   Q = µ±Nσ  , (5)

or, in using equation (4), the tolerance limit may be more conveniently expressed as a product of the mean
value and dimensionless variables,

   Q = µ (1±Nη) . (6)

The designer-controlled N-factor specifies the probability range, as illustrated on the probability
density distribution in figure 3. It is sometimes referred to as the tolerance limit coefficient, but here it is
referred to as the probability range factor. A probability range factor specified by N = 1, 2, 3, or 4
standard deviations about the mean of a normal distribution is calculated to capture 68.27, 95.45, 99.86,
or 99.73 percent of the phenomenon population, respectively. A probability range factor N = 1, 2, 3, or 4
of a one-sided distribution is calculated to capture 84.13, 97.72, 99.86, or 99.94 percent of the
phenomenon population, respectively.
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Probability 
distribution

N σ

µ σ

D
en

si
ty

Q

Probability
range

Figure 3.  Upper tolerance limit.

A positive deviation specifies the upper tolerance limit usually associated with demands, and a
negative range factor refers to the weaker side of the capability. One standard deviation includes the
probability range to the inflection point of the normal distribution curve. While a minimum of 30 samples
may provide a workable mean stress, more than 4 times that many samples may be required to establish a
good 3 standard deviation stress. As the sample size increases, the natural probability range factor
approaches 2.

III.  ILLUSTRATION MODELS

The illustration model selected was a simple static structure conceived to demonstrate the
normalization and characterization of engineering data and the formatting of the stress form and sizing
required for combining multiaxial stress components. The deterministic and first-order reliability methods
are illustrated through analytical models for maximum visibility, understanding, and implementation of
fundamental features to a variety of practical design conditions leading to a robust structural link. Here
robustness is understood as performing well, reliably, and at least life-cycle costs.

A.  Configuration

The structural system environments consist of a tension load, “P,” at an angle, “θ,” from the axial
torsional load, “T,” to be transmitted a distance, L, to point x = 0. These requirements establish the
envelope size and operating environments that shape and optimize load paths to produce a high-
performance structure. A tapered round shaft, shown in figure 4, provides the optimum configuration for
the specified type loads, paths, and arrangements. The single surface, shape, and limited dimensions
simplify production and inspection, all of which minimize rejects and costs. The third robust condition is
operational reliability that focuses on determination of the shaft radius, “r.” For brevity of presentation, the
radius will be determined only at x = 0.

L = 14
x

P

T

θ  =  60
2r

Figure 4.  Structural configuration.

After determining the scope of the problem, noting its load paths, and framing the component to
minimize the load influences on structural form sizing, then the engineering data development and stress
response formulations follow that are required to determine the radius for a robust structural link.
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B.  Data Development

Imposed tension and torsion environment data are assumed to be based on a series of observed
measurements reduced into a frequency distribution, or probability histograms, as shown in figure 5. The
base of the histogram is bounded by successive and equal ranges of measured values, and the heights
represent the number of observations (frequency) in each range.

8

2

4

6

2
3

8
7

4
2

1
13          14          15          16
    Torque,  T , Kip-inch N

um
be

r 
sp

ec
im

en
s,

 n

4

7
6

2
1

1.0            1..2              1.4
     Tension,  P,   Kips

µ

σ

Figure 5.  Loads frequency distributions.

To illustrate the direct normalization of a skewed distribution, the torque frequency distribution
data of figure 5 are applied to equations (1) through (4). Because the greater torque side defines the worst
demand case, only data from the shaded right side are used in figure 6 to calculate the normalized
distribution variables.

             n  (xi–µ)2 distribution mean,  µ = 14 kip-in.

1×8 (14.0–14.0)2 = 0

2×7 (14.5–14.0)2 = 3.5 sample size;  ∑n = 8+2 (7+4+2+1) = 36

2×4 (15.0–14.0)2 = 8.0

2×2 (15.5–14.0)2 = 9.0 variance, equation (2), σ2 = 28.5 / 35 = 0.81

2×1 (16.0–14.0)2 = 8.0 and  std. dev.,  eq (3 ), σ = 0.90
                         ∑ = 28.5 cov, eq (4),   η = 0.9/14 = 0.065

Figure 6.  Normalizing skewed distribution.
The materials selection task interfaces with all structural disciplines, and its result has the greatest

and most lasting effect on robust design. All material performance, manufacturing processes, control
points, and their costs are researched and traded. The structural analyst’s interest at this interface is the
assurance of robust material performance and a sufficient mechanical properties data base defined with
tolerance limit variables. Experience or knowledge from previous similar applications of critical and
complex regions subjected to forging, spinning, welding, cold shaping, etc., manufacturing processes are
scrutinized for potential bottlenecks.

Figure 7 shows examples of strength frequency distributions data assumed for developing the
required capability properties for dimensioning a structural component to a specified reliability. Exceeding
the yield strength deforms the part, which may change boundary conditions and compromise the part’s
operation. Exceeding the ultimate strength by anomalous loading will fracture the part thus leading to
serious losses.
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Figure 7.  Frequency distribution of material strengths.

Normalized statistical parameters from figures 5 and 7 distributions are summarized in table 1.

Table 1. Statistical variables of normalized loads and material.

Design
Parameter

Sample
Size

n
Mean

µ

Standard
Deviation

σ

Coefficient of
Variation

η

Loads
Torque, T
Normal, P

36
25

14 kip-in
1.1 kip

0.902 kip-in
0.138 kip

0.065
0.126

Strengths
Yield, Fty
Ultimate, Ftu

32
33

30 ksi
42 ksi

2.68 ksi
3.04 ksi

0.090
0.072

Maximum expected loads and minimum material strengths are specified through the tolerance limit
for specific events such that any required proportion of their distribution may be represented in response
analyses. Passive statistical variables that characterize tolerance limits are listed in
table 1. Currently, there is no uniform criterion for specifying the probability range factor across dis-
ciplines and projects. Load disciplines generally select the probability range factor for specific events
according to their data and experience base.

Applying the commonly used probability range factor of N = 3 to the statistical variables from table
1, the loads tolerance limits are

   P = µ P+N pσ P  , (7)

  P = 1.1+3(0.138) = 1.514 kip  , (7a)

   T = µ T +NTσ T   , (8)

  T = 14+3(0.902) = 16.70 kip–in   . (8a)

The material probability range factor is specified by a K-factor. Because of the inherent ran-
domness in specimens and testing, the same test conducted on the same number of specimens by different
experimenters will result in different means and standard deviations. To ensure, with a certain percent
confidence, that other portions are contained in the population, a K-factor is determined to account for the
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sample size and proportion. Figure 8 provides K-factors for random variables with 95-percent confidence
levels with three commonly used probabilities in one-sided normal distributions.

1.5
2

2.5
3

3.5
4

4.5
5

5.5

0 10 20 30 40 50 60 70 80 90

95 % confidence level
.99 probability

K
 -

 F
ac

to
r .95 probability

.90 probability

Number of samples, n

Figure 8.  K-factors for one-sided normal distribution.

The K-factor is designer controlled by the specification of the number of samples required, as
noted in figure 8. The K-factor rate increases sharply for all probabilities using less than 30 samples.
Decreasing the sample size is seen in equation (5) to decrease the allowed material performance, and it is
compounded when the material coefficient of variation is large. For large acreage of structures, trading
cost for increasing the sample size may decrease the cost of payload delivery. Most of NASA’s and DOD’s
material properties are specified by “A” and “B” basis. The “A” basis allows that 99 percent of materials
produced will exceed the specified value with 95 percent confidence. The “B” basis allows 90 percent with
the same 95 percent confidence.

Again using statistical variables from table 1 and assuming an A-basis material, the probability
range factor for 32 samples is K = 3. The material tolerance limit for yield strength is

   Fty = µ ty–Kσ ty  , (9)

  Fty = 30–3(2.68) = 22 ksi   , (9a)

and for ultimate strength is

   Ftu = µ tu–Kσ tu  , (10)

  Ftu = 42–3(3.04) = 32 ksi  . (10a)

These strengths are referred to as resistive stresses, FR = Fty, Ftu .

C.  Stress Response Models

The tension and torque loads shown in figure 4 were chosen to illustrate applications of normal and
shear type stresses. The format required is specifically illustrated to combine multiaxial stress components
into response models and for calculating their response combined-mean and standard-deviation values as
required for the reliability method.

The oblique tension load produces axial and bending loads that induces normal and varying
bending normal and transverse shear loads across the shaft length. The ratio of length to diameter  qualifies
it as a long beam for basic strength of materials formulation. The round section is an optimum element to
sustain torsional shear. The local simultaneous maximum stress responses to bending, tension, and shear
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occur on the upper boundary which sizes the structural form. The normal maximum stress at x = 0 is
expressed by

   Fx = P
π r2

4 L
r sin θ + cos θ ...  , (11)

and the torsional stress is
   Fyz = 2T

π r3   . (12)

Though unnecessary for some deterministic problems, the stress response must be expressed as a product
of the random variable (load) and a stress-form coefficient for reliability methods. These correspond to the
load and stress-transformation matrices, respectively, in a multidegree-of-freedom dynamic problem.5 The
normal stress response of equation (11) is then defined by

  Fx = Lx Cx  , (13)

where Lx = P is given by the tolerance limit of equation (7). The stress-form coefficient is the geometric
stress property of a structural form cross section. The stress-form coefficient of the normal stress
component, Fx, parted from equation (11) is

   Cx = 4 L
π r3 sin θ + cos θ

π r2 ...   , (13a)

  Cx = 15.44
r2 + 0.159

r3   . (13b)

The shear stress is similarly expressed by

  Fyz = LyzCyz   , (14)

where  Lyz = T is defined by the tolerance limit of equation (8), and the stress-form coefficient from
equation (12) is

   Cyz = 2
πr3   , (14)

  Cyz = 0.637
r3   . (14b)

Response equations (13) and (14) predict the multiaxial component stresses that must be combined
so as not to exceed material strengths derived from figure 7 statistical data. Since these material strengths
are based on uniaxial tension tests, the combined normal and shear applied stress (demand) values must be
compatible and correlational to the uniaxially test derived strengths (capabilities).

D.  Combined Stresses

A commonly used criterion for combining multiaxial stresses into uniaxial stress is the minimum
strain energy-distortion theory, which supposes that hydrostatic strain (change in volume) in a metallic
structure does not cause yielding, but changing shape (shear) does cause permanent deformation. This
limit of multiaxial stress state is empirically related to the uniaxial tensile yielding, and it is reasonably
consistent with experimental observations. It is sometimes referred to as Mises failure criterion6 and is
expressed by
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FA = Fx

2
+Fy

2
+Fz

2
–FxFy–FxFz–FyFz+3(Fxy

2
+Fxz

2
+Fyz

2
)

1
2   . (15)

Each multiaxial applied stress component in equation (15) is expressed by a tolerance limit,

   Fi = µ i+Niσ i   , (16)

and the resulting combined applied stress tolerance limit is a worst-on-worst single-value case currently
used by the deterministic method. However, the reliability method requires the resulting tolerance limit to
be statistically derived and characterized, with all variables explicitly identified and defined,

   FA = µ A+N Aσ A   , (17)

or using equation (4),
   FA = µ A (1+NA ηA)  . (17a)

An error propagation method7 and program for the statistical derivation of the combined uniaxial applied-
stress mean, standard deviation, and probability range factor based on the Mises criterion is presented in
appendix A.
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IV.  DETERMINISTIC METHOD

The deterministic method is dominantly used for sizing structures in the aerospace industry with
mixed justifications. It is the easiest technique to apply and verify. It is generally perceived to be
conservative, but the method harbors enough unsuspected deficiencies that its conservatism may be
contributing to its half-century of success. It is the preferred method for sizing multicomponent systems
having multicritical regions per component, and whose combined structural weight is not payload-
performance sensitive. It is shown to be limited in safety assessments. The method’s design data,
parameters, and specified probability ranges are independently developed by loads and materials
disciplines and are provided to stress analysts to size (nonoptimally) and test structural elements and forms
to standard safety factors.

A.  Concept

The deterministic method assumes that a given structural system safety may be specified by an
arbitrarily selected ratio of single-valued material minimum strength and maximum applied stress. That
specified ratio is the conventional safety factor,

  SF =
FR
FA

  . (18)

The NASA intercenter safety factor criterion for semistatic structures is a verified 1.0 ratio on yield and 1.4
on ultimate strength. Though resistive and applied stresses are generally provided and specifically applied
as single values, they are developed by their respective disciplines with probability ranges specified
through tolerance limits.

Applied-stress components are combined through the Mises criterion, and the resulting uniaxial
stress is expressed by the tolerance limit of equation (17). The minimum resistive stress based on yield or
ultimate stresses is characterized by the tolerance limits of equations (9) or (10). Incorporating the
resistive- and applied-stress tolerance limits into equation (18), the safety factor may be decomposed with
statistical and designer control variables,

   SF =
µ R–Kσ R
µ A+NAσ A

  . (19)

In constructing design parameters from equation (19) into the failure concept of figure 2, the
deterministic concept emerges as dividing the difference of the resistive- and applied-stress means into
three distinct zones, as shown in figure 9. The sum of these zones,

   µ R–µ A = λ A+ λ o+λ R   ,

governs the tail-overlap lengths to satisfy one condition of the failure concept. But the method ignores the
corresponding size of the overlap area, which is the second failure concept condition and, therefore,
cannot predict its combined reliability.

To understand the deterministic failure governing technique, it should be noted that each end zone
specifies a probability range to control the tail overlap intercept. Zone λA is the probability range of the

combined applied stresses, λ A  = Ν A σ A , derived from equation (17). Zone λ R  is the
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Figure 9.  Conventional deterministic concept.

probability range of the resistive stress, λR = KσR, from equation (9) or (10). Both zones independently
control the difference of their means through the designers’ arbitrary selection of probability range factors,
NA and K. The midzone λο does not explicitly specify a probability range, but its included safety factor
does effectively increase the probability range of the applied stress range factor, NA. When the safety
factor is greater than unity, the combined applied stress effective probability range factor is extended by

   Neff = SF ( 1
η A

+ NA) – 1
η A

  . (20)

Specifying a 1.0 safety factor, the effective range factor is identically the applied-stress specified
probability range factor. Applying a 1.4 safety factor with NA = 3 will effectively increase it about three
times with a probability value that can only be established as being very safe. On the other end, operating
under the maximum specified environments with a submarginal safety factor will reduce the applied-stress
probability, which increases the tail overlap and probability of failure.

Since the applied-stress probability range factor is related to operational loads, and because
operational loads are verified by limited field or flight tests at a much later development phase, this
effective probability range parameter could serve as another useful index of the unverified load in a stress
audit. While the safety factor margin would verify the pass-or-fail response of the test article, the effective
range factor would predict the total probability of the applied test load using the test derived safety factor in
equation (20). The test derived safety factor would further identify the proportion of the effective range
factor verified. This combination would contribute information for design acceptance or modification,
provided the coefficient of variation is made available from the deterministic method.

In particular, safety factors exceeding unity will expand the difference of the distribution means
through their inclusion into the midzone and the net extended difference is expressed by

   µ R–µ A
’ = µ R–µ A+(SF –1) FA  . (21)

The midzone is defined by
   

λo = (FR–FA) = 1 -
1

SF
FR  , (22)

in which the conventional safety factor is seen to be the most sensitive designer control parameter to
govern the tail overlap.

B.  Application

Two primary applications of the deterministic method are to size a structural form to a specified
safety factor and to predict the safety factor of an existing structural article or design. A structural element,
or form, is sized through the Mises criterion of equation (15), which is equated to the maximum allowable
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stress criterion of equation (18), which, in turn, is limited by a specified safety factor. Prediction of a
structural safety factor is the reverse of sizing and is more direct, therefore, only the structural form sizing
of the figure 4 configuration needs to be illustrated.

In sizing a structural form, the deterministic tension load of equations (7a) and the stress-form
coefficient of equation (13b) are substituted into equation (13) to give the deterministic single-value
normal-stress component expressed with the unknown radius,

  Fx = 1.514 15.44
r2 + 0.159

r3   . (23a)

Similarly, substituting the deterministic torque and stress-form coefficient of equations (8a) and (14b),
respectively, into equation (14) provides the single-value shear-stress component,

  Fyz = 16.70 0.637
r3   . (23b)

Combining these stresses into the Mises criterion, equation (15), renders the structural form-sizing
criterion based on the allowable combined applied-stress criterion FA,

  
FA = 23.37

r2 + 0.241
r3

2
+ 3 10.64

r3

2
1
2   . (23c)

In designing the structure to uniaxial yield stress, the NASA safety factor is unity and the deterministic
resistive stress from equation (9a) is

  FR = Fty = 22 ksi  . (23d)

Substituting equations (23c), (23d), and SF =1 into equation (18), the radius dimension is solved by the
Newton method to be r = 1.14 inches. NASA’s safety criterion requires a structure to be verified to no less
than the specified design safety factor. To avoid premature test failure and potential redesign, an estimated
uncertainty factor must be lumped into equation (18) to compensate for modeling errors and human
assembling dispersions,

   FR = FA×SF(1+e)  . (24)

Modeling errors include boundary assumptions, response models, loads, etc. Estimates may be
based on structural complexities and sensitivities or from knowledge of past test deficiencies. Not all
uncertainties are equally significant on any one structure. Estimating a lump error of 10 percent and using
equation (24), the radius is recalculated to a minimum requirement of r = 1.19 inches.

Repeating the analysis with the SF = 1.4 on ultimate strength, the minimum radius required is r =
1.13, which is less than the yield strength case, and admits the yield strength condition to be the worst
design case.

The production specifications of the diameter nominal and tolerances dimensions are based on
sensitivity analyses and trades to produce a robust component. Note that a 10-percent reduction in
allowable stress in the yield strength mode increased the radius 4.4 percent, which should increase the
weight 9 percent. A 9-percent weight increase on large structural forms could be a significant payload
penalty. These types of sensitivity analyses also provide a basis for specifying raw materials acceptance
and processing, machining and heat treatment tolerances, assembly tolerances, inspection points, etc., and
for trading their life-cycle costs with payload delivery costs.



13

Deterministic verification consists of experimentally validating the structural response through the
specified safety factor applied to equation (18). Because the probability of applied loads varies from
project to component, and because the safety factor is essentially a hit-or-miss proposition, the safety
factor alone is not an absolute reference of safety. Verification tests resulting in submarginal safety factors
are usually resolved by intuitive estimates of probability and the consequence of failure, and by similar
collective experiences with minimum operational safety factors.

C.  Deficiencies

Perhaps the most detrimental feature in the deterministic method is its inability to design and predict
the structural reliability over all regions of a component through a fixed specified safety factor as
commonly assumed. Because the tail-overlap area of the interacting applied- and resistive-stress
distributions is governed by the difference of their means only, and recalling from the failure concept
conditions that change in combined applied-stress distribution shapes, ηA, acting at critical regions cannot
be recognized for local sizing, then a constant safety factor cannot provide a uniformly reliable structure.

Since the probability range factor and the safety factor are independently specified, and both
simultaneously govern the tail-overlap through the applied-stress effective range factor expressed by
equation (20), a stress audit based on safety factor margins alone is incapable of assessing relative safety
or of necessarily exposing the weakest structural region. Relative safety assessment of different material
parts becomes more clouded. A test-verified safety-factor margin may exceed specification, but combined
with a low probability range factor represented in equation (20) may result into a submarginally stressed
region that may not be visible to the analyst. Omission of discipline probability contributions and the
genetic shortcoming in ignoring local distribution shapes compounds the fading confidence of some stress
audits to evaluate critical reliabilities or to identify the weakest links through safety factor margins.

Another weakness in the method is that by imposing a standard safety factor on all structural
materials, the structural reliability is dependent on the strength of selected materials, as expressed by the
midzone stress of equation (22). Holding the safety factor constant and increasing the resistive stress
decreases the available operational elastic range of high-performance materials. Figure 10 depicts the
relative stress performance of high-strength steel and aluminum structures using current safety factors.
Though aluminum and steel specific yield strengths are relatively the same (lightest shade), the contingent
stress (medium shade) imposed on steels for anomalous loads backup is double that of aluminum’s, which
inequitably denies elastic stress (darkest shade) for more operational performance. Figure 10 further
illustrates that a stress audit indicting a steel structure with a negative safety margin may have more
reserved operational stress (darkest shade) than some aluminum structures with positive margins and
negligible denied elastic stress.

Ftu
1.4

 - Fty

Fty /ρ

Ftu /1.4

specific yield strength

contingent stress

elastic stress denied

  D6AC	      4130      7075-T6    2024-T81  2219-T87

Figure 10.  Safety factor bias on material strengths.

V.  FIRST-ORDER RELIABILITY METHOD
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Many techniques have been investigated8 and others are evolving for providing reliable structures,
but the one that promises to be most compatible with prevailing deterministic design techniques and with
the culture of most analysts is the first-order reliability method.

The first-order reliability method assumes that applied and resistive stress probability density
functions are normal and independent and may be combined to form a third normal expression9,

   
Z =

µR–µA

σR
2
+σA

2
  , (25)

known as the safety index. The relationship between the safety index Z and reliability R is given by

   R = P(FR–FA > 0) = φ (Z)  ,

where φ(Z) is the standard cumulative distribution, and figure 11 relates the equation (25) safety index
with reliability.
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Figure 11.  Reliability versus safety index.

A.  Proposed Reliability Concept

In designing to a specified reliability, its related safety index of equation (25) should be
characterized with design control and passive variables in common with current deterministic compu-
tational methods to facilitate understanding and the technical bridging to the reliability method. The
deterministic stress zones in equation (21) and figure 9 embody these design variables, and their sum
further defines the difference of the applied- and resistive-stress means in common with the safety index
numerator in equation (25). Standard deviations required by the denominator are defined by the
deterministic respective zones.

To incorporate these expressions into the safety index, tolerance limit variables of the end zones are
rearranged and abbreviated to ease their repeated use. Zone λR in figure 9 is the probability contribution of
the resistive stress, which is characterized by tolerance limit equation (9a), and by which the resistive mean
stress may be expressed as

   µ R =
FR
A where A = (1–Kη R)  . (26)

Zone λA multiaxial applied stresses are first combined by the Mises criterion of equation (15), and then its
tolerance limit is statistically derived and characterized into equation (A1) through the error propagation
method7 outlined in appendix A. The resulting uniaxial combined applied-stress tolerance-limit variables
are expressed by
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   µ A =
FA
B where B = (1+NAη A)  . (27)

Substituting these expressions into equation (21), the extended difference of the means becomes

   µ R–µ A
’ =

FR
A –

FR
B×SF +

FR(SF–1)
SF   . (28)

 Substituting equation (28) into the safety index numerator and standard deviations

   
σ R = µ R η R =

FRη R
A

  and   
   

σ A = µ Aη A =
FRη A
B×SF

  , (29)

into the denominator and simplifying, the proposed universal first-order reliability criterion is established,
   

Z =
ϕ SF B–A+(ϕ SF–1) BA

(ϕ SF)
2 ηR

2
B

2+ηA
2
A

2
1
2

  . (30)

Solving for the reliability design factor “φSF” provides the reliability method the equivalent of the
deterministic safety factor for calculating the maximum allowed combined applied stress criterion,

   ϕ SF =
FR

FA
’   . (31)

At this point, it may be noted that the reliability method established three criteria over the
deterministic’s two, which deserve comparison. Unlike the deterministic arbitrarily selected safety factor,
the reliability design factor, φSF, is solved from the reliability criterion, equation (30), to satisfy a
specified reliability, Z. Similarly to the deterministic method, the allowable applied-stress criterion,
equation (31), is constrained by the reliability design-factor criterion. As in the deterministic method, the
structure is sized through the Mises criterion, equation (A1), equated to the maximum allowed applied
stress. But unlike it, the combined tolerance limit variables are statistically derived from the Mises criterion
and iterated back into the reliability criterion.

As in the deterministic method, the reliability method basic applications are to size a structural form
to satisfy a specified reliability, or to determine the reliability of an existing sized structure. Structural
sizing is an iterative process which should be initiated by first estimating the structural size using the
deterministic method. This approach would allow sharing common design parameters and techniques and
would provide comparison of their final results. The estimated size is then substituted into the stress form
coefficients and combined with loads tolerance limits to define multiaxial component stresses of equations
(13) and (14). These multiaxial stress components are combined into a uniaxial stress through the Mises
criterion of equation (A1). Reducing the tolerance limit stress components to single values reduces the
resulting uniaxial stress into a worst-on-worst deterministic single value.

To derive the statistical tolerance-limit variables of the uniaxial stress based on the Mises criterion,
and as required by the reliability criterion of equation (30), the combined mean, standard deviation, and
tolerance-limit coefficient are computed through the error propagation law outlined in appendix A and
characterized by equation (A12). Applying these variables for the estimated structural size into the
reliability criterion, the reliability design factor is solved for a specified reliability, and it is imposed on the
maximum allowable applied-stress criterion of equation (31). This size iteration process is repeated until
optimized by the disparity coefficient in equation (31), achieving unity.
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Design variables, controlling the disparity coefficient that optimizes structural sizing, are the
independently specified probability range factors NA and K applied to the Mises and reliability criteria.
This is a welcome discovery, in that finally a compelling requirement for indirectly coordinating and
optimizing multidiscipline control parameters has been identified by the reliability criterion. Reducing the
disparity coefficient increases structural performance and decreases payload delivery cost. This
supplemental role of the reliability criterion to optimize performance should support and enhance reliability
systems trades with payload costs.

The Mises criterion was noted to produce two combined applied stresses, the worst-on-worst FA
from the deterministic single values of equation (A1), and the statistically derived FA' tolerance-limit
format of equation (A12) for the same size structure. They are related by

   ϕ SF FA
’ = SF FA = FR ,

and imply that the statistically derived allowable stress is more efficient by a factor equal to the disparity
coefficient. It should be expected that the disparity coefficient will increase as more multiaxial stress
components with dispersions are included in the Mises criterion. Thus, a reliability sized structure should
be optimized by reducing the size to achieve a disparity coefficient of unity for the specified safety factor
and reliability. This relationship quantitatively demonstrates the conservative performance of the
deterministic over the reliability method.

To predict the reliability of an existing structure, the actual size is substituted in the Mises criterion
and processed through the reliability criterion as above. The disparity coefficient is set to unity in the
reliability criterion, and the reliability is directly determined.

The first-order reliability method generates a uniformly reliable structure, and its application
requires no new skilled analysts and no exceptional understanding and effort over the prevailing
deterministic method. It must and does provide for the appropriate implementation of design uncertainties
and for the reliability response verification which follow.

B.  Design Uncertainties

For simplicity and expediency, design iteration phases often use mean value data, and postpone
design dispersions that are not obviously dominant and to which the system is not sensitive. Dispersions
and uncertainties that are later estimated to be significant should be appropriately implemented into the
reliability criterion. Uncertainties that are frequently neglected, and that most often cause premature test
failures, are the modeling uncertainties: loads, stress, metallurgy, and manufacturing. The latter three
uncertainties are stress response related and are lump verified as either exceeding or diminishing the
predicted safety factor.

Modeling errors encroach on normal probability distributions through the two normalized statistical
variables with different sensitivities to reliability. If the error biases the applied stress mean, ignoring it
will in fact increase its mean stress, decrease the difference of the means, and thereby increase the
distribution tail-overlap. This error may be compensated for by an accumulative uncertainty factor,

  e = e1+e2+ e3+...+en  , (32)

acting on the conventional  safety factor. Stress modeling and boundary conditions are more likely to bias
the mean. Other examples may be related to dimensional buildup and final assembly force-fits producing
preloads in operationally critical stress regions.

Modeling manufacturing uncertainties, which bias the coefficient of variation, are judged on
available data base and related experiences. Some estimates may be modeled from assumed tolerance
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behavior. Dynamic loads are dependent on structural stiffness, which is contingent on material properties’
dispersions and on manufacturing and assembly tolerances. Contact wear increases tolerances and reduces
stiffness with increasing usage and must be considered in operational robust design. Manufacturing
processes are other sources of uncertainties related to dispersions. These kinds of uncertainties increase the
applied-stress standard deviation and tail lengths about the fixed mean, which increase the tail-overlap.
Standard deviation uncertainties are combined in conformance with error propagation laws11 that follow.

When two or more independent variables are added, their standard deviations are “root-sum-
squared” (rss) by the summation function rule,

   for z = x+y ; σz = σx
2
+σy

2   . (33a)

When independent variables are multiplied and/or divided, their coefficients of variation are rss according
to the power function rule:

   for z = x
n
y

m
, ηz = n

2ηx
2
+m

2ηy
2   . (33b)

Exponents may be negative or positive as they divide or multiply, respectively. These uncertainty
dispersions are combined with the applied-stress coefficient of variation,

   η Ae = 2η A–[η A
2 +η e

2]0.5  , (34)

and substituted into the design parameter B of equation (27) as,

   Be = (1+NAη Ae)  . (35)

The list of possible uncertainties is design specific, but only those assessed to be probable and
significant should be incorporated into the analysis. It should be cautioned that incorrect assumptions,
faulty software, and other errors and incomplete analyses that can be corrected should not be categorized
as uncertainties

Combining the cumulative and the propagation errors with the applied-stress mean and dispersions
in equation (30), the reliability design factor for a specified reliability and compensating uncertainties is
satisfied by

   
Z =

(ϕ DSF)Be–A+ABe((ϕ DSF)–e–1)

η R
2(ϕ DSF)2Be

2+η Ae
2 A2

1
2

  , (36)

from which the reliability design factor, φD SF is solved and applied to the one allowable stress criterion of
equation (31).

C.  Verification

In verifying the reliability criterion response of equation (36), the yield safety factor coupled in the
reliability design factor is identical to the deterministic safety factor of equation (18), and is based on the
NASA safety criterion. Because this safety factor is verified and available from most structural static tests,
the deterministic test-derived safety factor should be an opportune test parameter to verify concurrently the
safety index and safety factor response of static structures for the two methods. Substituting the test-
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derived safety factor of equation (18) into the reliability criterion of equation (36), the reliability criterion
response is calculated and verified by

   
ZT =

(ϕDSF T) Be – A + A Be ((ϕDSFT) –e –1)

η R
2 (ϕDSFT)2Be

2 +η Ae
2 A 2

1
2

 
  . (37)

Again, using the test-derived safety factor, the effective total test applied-stress probability range of
equation (20) is predicted by

   NeffT
= ϕ DSFT

1
η A

+ NA – 1
η A

  , (38)

and introduces another reliability assessment index before operational testing. It experimentally verifies the
probable contribution of the safety factor to the maximum predicted operational applied stress,

  NT = Neff –NA  . (39)
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VI.  ILLUSTRATED APPLICATIONS

The application of the method consists of characterizing the specified applied- and resistive-stress
distributions into first-order tolerance limits and incorporating these statistical variables into the
deterministic method to estimate the component size, then that estimated size is used to calculate design
parameters required by the reliability criterion (equations (30)) either to determine the reliability of a
structural region, or to size structures to a specified reliability. Equation (36) allows for designing with
compensating uncertainty factors, and equation (37) is used to verify experimentally the reliability
response. Equation (38) predicts the effective probability range of the test applied stress.

Cases illustrated are:

No. 1. Estimate the reliability of a deterministically 3-sigma sized structure based on yield
strength.

No. 2. Verify reliability response from test with a resulting sub marginal SFT .

No. 3. Repeat case No. 1 based on ultimate strength.

No. 4. Repeat case No. 1 with same reliability but reduced probability range factors.

No. 5. Size structure with implemented design uncertainties.

No. 6. Test verify case No. 5 reliability.

A.  Case No. 1, Reliability of Deterministically Sized Component

An interesting and typical application of the method is to calculate the reliability of the
deterministically sized structure previously illustrated by the deterministic method application. Ignoring
lump errors for simplicity and to avoid fringe discussion of differences of implementation, behavior, and
results, the deterministically derived radius of 1.14 inches from the deterministic application section is
used.

In combining applied stresses as outlined in appendix A, the multiaxial applied-stress components
engaged in the Mises criterion, equation (A1), are expressed by equation (A2) as the product of externally
applied multiaxial tolerance limit loads,

  Lx = 1.1+3(0.138) = 1.514  , (7a)

  Lyz = 14+3(0.902) = 16.70  , (8a)

and their stress-form coefficients

  Cx = 15.44
(1.14)2 + 0.159

(1.14)3 = 11.98   , (13b)

  Cyz = 0.637
(1.14)3 = 0.43  . (14b)

Substituting these multiaxial stresses into equation (A1) gives the conservative deterministic combined
applied stress which is limited by the allowable stress criterion of equation (18), based on the yield
resistive stress of equation (9a),
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   FA = (1.514×11.98)2+3(16.7×0.43)2
1
2 = 22.0  . (40a)

The statistically combined applied stress mean is calculated from equation (A3),

   µ A = (1.1×11.98)2+3(14×0.43)2
1
2 = 16.80   , (40b)

and partials from equations (A9) and (A10) are

   ∂FA
∂Lx

= 11.98
2×16.8

(2×1.1×11.98) = 9.397  ,

   ∂FA
∂Lyz

=
3×14.0(0.43)2

16.8
= 0.462 .

Substituting these partials into equations (A5) and (A6) renders the applied-stress standard deviation,
   σ A = (9.397×0.138)2+(0.462×0.902)2

1
2 = 1.362   , (40c)

and the controlled standard deviation,

   σ A = (9.397×3×0.138)2+(0.462×3×0.902)2
1
2 = 4.08   . (40d)

Using results from equations (40c), and (40d) into equation (A7), gives the combined probability range
factor,

  NA = 4.08
1.362

=3.0  . (40e)

Dividing equations (40c) by (40b) provides the dimensionless coefficient of variation of the combined
applied stress,

   η A = 1.362
16.8

= 0.081  . (40f)

Using calculated variables from equations (40b), (40e), and (40f), the statistically combined applied-stress
tolerance limit is characterized by equation (A12),

  FA
’ = 16.8+3.0(1.362) = 20.89  . (40g)

Resulting statistic variables and design developed parameters are explicitly defined and listed in table 2
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Table 2.  Design parameters and statistical variables, problem No. 1.

Distribution NA K A B FA FR µ σ

Applied 3 – – 1.243 20.89 – 16.80 1.362

Resistive – 3 0.733 – – 22.0 30.0 2.68

The statistically derived combined applied stress must be adjusted through the disparity coefficient
of equation (31),

   ϕ =
FR

SF×FA
’ = 22

1×20.89
= 1.05  , (40h)

which implies the radius is nearly optimum. Applying it to the reliability criterion of equation (30), the
calculated safety index of the deterministically sized component is,

   Z =
(1,05)1.243–0.733+(1.05–1)(1.243×0.733)

(1.05×0.089×1.243)2+(.081×0.733)2
1
2

= 4.73

 
, (40i)

and relates to a reliability of 0.96 from figure 11.

B.  Case No. 2, Test Verify Reliability Response

Assume the component in case No. 1 was test verified and the test yield safety factor was SFT =
0.96. Applying it and the adjusted disparity coefficient to equation (30),

   ZT =
(1.05×0.96)×1.243–0.733+((1.05×0.96)–1)(1.243×0.733)

((1.05×0.96)×0.089×1.243)2+(.081×0.733)2
1
2

= 4.06  , (41a)

which relates to a reliability of less than 0.95. Because the product φΤSF = 1.0, the effective applied-
stress probability range factor of equation (38) is coincidentally the same 3-sigma as specified by the
loads’ discipline, which captures 97.7 percent of predicted applied stress.

C.  Case No. 3, Repeat Case No. 1 Based on Ultimate Strength

Case No. 1 was repeated using a safety factor of 1.4 on ultimate strength. The applied-stress
allowable was 23.57 ksi resulting in a radius of r = 1.11 inches. Ultimate-strength and combined applied-
stress characteristic from table 1 and equation (A12) were revised and substituted into equation (30). The
resulting safety index exceeded figure 11, which is clearly unrealistic.

It was noted in earlier phases of this study that reliability was very sensitive to the safety factor,
and that extending it much beyond the yield point produced impractical results. Equation (20) also denoted
this large increase of the effective probability range factor with increase of safety factor. It essentially
extends the distribution mathematically into a very long thin tail that may have no physical reality. It tends
to overwhelm the probability contributions of other design variables and degenerates the reliability
criterion.

It should be concluded that the reliability method be confined to the elastic range limit, which is
within the normal operating range and of  primary interest to most robust structural designs. It would also
conform with other failure modes which are all based on materials yield properties.
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D.  Case No. 4, Repeat Case No. 1 With Reduced Probability Range Factors,
But Same Reliability

Suppose the component is not a critical structural link and a weight savings is desired by relaxing
the probability range factors to N = 2 for loads and K = 2.3 for B-basis material from 36 specimen.
However, an overriding specification requires all components of the system to be designed to a uniform
reliability, or a safety index of Z= 4.73. What is the deterministically sized radius and how will reliability
derived radius be different from case No. 1?

Repeating the process as before, the B-bases resistive stress from table 1 is

FR = 30–2.3(2.68) = 23.8  ,

and loads from table 1 are

P = 1.1+2(0.138) = 1.376  ,

T = 14+2(0.902) = 15.804  .

Applying these variables and stress-form coefficients into the deterministic equations (A2) and (A1), and
equating to the ultimate resistive stress,

   
FA = 1.376 15.44

r2 + 0.159
r3

2
+ 3 15.8×0.637

r3

2
1
2 = 23.8   , (42a)

the deterministically solved radius is r = 1.07 in. Applying this estimated radius as a first cut in the
reliability method, the stress-form coefficients are

  Cx = 15.44
(1.07)2 + 0.159

(1.07)3 = 13.61   ,  and    Cyz = 0.637
(1.07)3 = 0.52  . (42b)

Using the error propagation program in appendix A, the resulting design variables are listed in
table 3.

Table 3.  Design parameters and statistical variables based on r = 1.07 in.

Distribution NA K A B FA FR µ σ η

Applied 2 – – 1.156 22.63 – 19.50 1.53 0.078

Resistive – 2.3 0.795 – – 23.80 30.0 2.68 0.089

Substituting these variables into the safety index equation (30) and solving for φSF such that
Z = 4.73,

   
4.73 =

ϕSF(1.156)–0.795+(ϕSF –1)(1.156×0.795)

(ϕSF)2(0.089×1.156)2+(0.078×0.795)2

1
2

  , (42c)
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the reliability design factor is φSF = 1.125.

The statistically derived combined applied-stress tolerance limit calculated from equation (A12) is
   FA
’ = 19.5(1+2×0.078) = 22.5 . (42d)

Adjusting the applied stress of equation (42d) to the reliability design factor through equation (31),

   ϕ SF×FA
’ = 1.125×22.5 = 25.3 > FR ,

the applied stress is shown to exceed the resistive stress. Assumptions applied to the deterministic method
to size the radius were too small to satisfy the specified reliability. Increasing the radius to 1.10 in, the
stress-form coefficients reduce to Cx = 12.78 and Cyz = 0.48. Applying them to the error propagation law
programmed in appendix A produces a statistically derived combined applied stress of FA' = 21.2.
Adjusting the applied stress with the above derived reliability design factor,

   ϕ SF×FA
’ = 1.125×21.2 = 23.8 = FR  , (42e)

the 1.10-in radius satisfies the reliability requirements. Though starting with different design parameters,
the increased radius demonstrates that the specified reliability will resize the structure to be satisfied
regardless of the autonomously controlled probability range factors. The radius is less than case No. 1
because the resistive stress selected is greater than the A-bases. Again using equation (38), the effective
combined stress probability range factor is Neff = 3.83 with a probability of  0.94.

E.  Case No. 5, Size Structure With Design Uncertainties

A typical structural sizing problem with implemented design uncertainties might assume the
configuration and environments of case No. 1 with estimated manufacturing and assembling errors of e =
0.12 and ηe = 0.7ηA. A component level of R = 0.94 reliability is specified and another is added because
of the inexperience and because of the sensitivity 12 of the method. A total design reliability of R = 0.95 is
used to guarantee the specified 0.94 which relates to a safety index of Z = 4.25.

In initiating the sizing iterative process through the deterministic method, the design uncertainty
errors are lumped into the maximum allowed applied-stress criterion of equation (24),

   FA = 22
1×(1+0.13)

= 19.4  , (43a)

and equating it to the Mises sizing criterion using statistical variables from table 1 and stress form
coefficients of equations (13b) and (14b),

  
FA = 23.37

r2 + 0.241
r3

2
+ 3 10.64

r3

2
1
2   , (43b)

the estimated radius is r = 1.15. Substituting the radius into equations (13b) and (14b), the stress-form
factors are

  Cx = 15.44
1.152 + .159

1.153 = 11.78 , Cyz = .637
1.153 = 0.42 . (43c)

Substituting those stress-form factors and the normal and shear loads’ means, standard deviations, and
probability range factors from table 1 into the error propagation law of appendix A, the design variables
required by the propagation law are listed in table 4. Table 5 lists the reliability criterion variables.
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Table 4.  Error propagation law variables for 1.15-in radius.

Design Variables Normal Load Shear Load Combined Uniaxial

Mean 1.1 14.0 16.48
Standard deviation 0.138 0.90 1.34
Probability range factor 3 3 3
Stress form coefficient 11.78 0.42 –
Coefficient of variation – – 0.081
Applied stress – – 20.5

Table 5.  Reliability criterion variables for 1.15- and 1.17-in radii.

Distribution Rad NA K A B FA FR µ σ η

Resistive – – 3 0.733 – – 22.0 30.0 2.68 0.09

Applied 1.15
1.17

3
3

–
–

–
–

1.24
1.24

29.5
19.73

–
–

16.48
15.83

1.34
1.39

0.081
0.082

Using equation (34), the combined applied-stress coefficient of variation is

   η Ae = 2×0.081–0.081×(1+0.72)
0.5

= 0.063  ,  (43d)

and substituting into equation (35) gives

   Be = 1+3×0.063 = 1.19  . (43e)

Applying the above developed design variables to the reliability criterion of equation (36) and solving for
the reliability design factor φ SF from

   4.25 =
(ϕ SF)(1.19)–0.73+((ϕ SF)–0.12–1)(1.19×0.73)

(ϕ SF)2(0.09×1.19)2+(0.081×0.73)2
1
2

  , (43f)

the reliability design factor is φ SF = 1.10 for a 1.15-in radius. Using it and the final statistically derived
applied stress of case No. 4, equation (31) equates to the minimum resistive stress,

   ϕ SF×FA
’ = 1.10×20.5 = 22.55 > FR   , (43g)

which exceeds the resistive stress of equation (9a).

Repeating steps  (43c) through (43g) with an estimated radius of 1.17 in, φ SF = 1.10,

   ϕ SF×FA
’ = 1.10×19.73 = 21.73 = FR   , (43h)

and the 1.17-in radius is adequate.

F.  Case No. 6, Test Verify Reliability of Case No. 5
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 To test verify the reliability response of case No. 5 for a 1.17-in radius, apply the disparity
coefficient derived from equation (42f) and the test verified yield safety factor of 1.05 (assumed) into
equation (37),

  4.9 =
(1.1×1.05)(1.19)–0.73+((1.1×1.05)–0.12–1)(1.19×0.73)

(1.1×1.05)2(0.09×1.19)2+(0.081×0.73)2
1
2

  , (44)

the resulting safety index of 4.9 relates to a reliability of 0.96. Using equation (38), the effective
probability range factor is Neff > 5, capturing over 0.94 percent of predicted applied stress.

VII.  RELIABILITY SELECTION CRITERIA

Formulations of reliability selection criteria are still in sparse and sketchy concepts for various
structural failure modes. Selection criteria concepts being considered for semistatic structures range from
an arbitrarily agreed upon standard value as fashioned by the deterministic safety factor to criteria
supporting risk analyses. In the absences of any established selection criterion, it is interesting to examine
briefly the interaction of these two concepts with the proposed first-order reliability method.

An immediate demand for a simple and user-friendly reliability selection criterion would be to develop
a standard safety index derived from the reliability criterion of equation (30), based on a range of design
variables representative of successful deterministic design and operational experiences. This approach
would not only provide a basis for safety factor and safety index judgment and correlation, but it would
also promote designer confidence in the transition. A first-cut safety index was bounded with a small
sample of A-basis materials, 3-sigma probability forcing-function dispersions, and design variables
associated with a current aerostructure. The resulting minimum reliability exceeded a value of four-nines
on operational stress limit (yield stress).

Because this limited analysis revealed a critical sensitivity of the safety index to the reliability design
factor, the structure should be designed to a reliability of five-nines in order to guarantee four-nines. The
safety index was also noted to be an order of magnitude less sensitive to other design variables. The
motive for designing to an arbitrarily selected reliability over the arbitrarily selected safety factor is to
overcome nonuniform reliability design, inadequate stress audits, and other deficiencies discussed above.
An extension of this study is the subject of another paper.

One considered approach to supporting risk analyses is to calculate the risk cost using the product of
the probability of failure,

p = (1–R), (45)

and the cost consequence of that structural failure. The cost consequence may include cost of life and
property loss, cost of operational and experiment delays, inventories, etc. A suggested criterion for
balancing the risk cost may be to equate some proportion of the risk cost to the initial and recurring costs
required to provide the structural reliability to balance the risk cost. Initial costs would consider the
increased structural sizing to the same reliability used in the risk through the failure probability of equation
(45). Recurring costs include increased propellant, and the increased payload performance costs caused by
the increased structural sizing and propellant weights to accommodate the risk side of the equation.

It would seem that a structural reliability design method is essential for the development of a
reliability selection criterion. Since different failure modes may require different reliability design methods,
reliability selection criteria should be expected to be failure mode related.
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VIII.  SUMMARY AND CONCLUSION

The deterministic method is the most commonly applied technology on semistatic flight structures,
which comprise over 60 percent of aerostructural weight. It is arbitrarily specified, directly and expediently
factored into structural sizing, enabling substantial autonomous interdiscipline design development, and its
response may be experimentally verified. It is applicable for sizing relatively small parts having a multitude
of critical regions, and for complex finite element models. However, it is genetically flawed because it
ignores probability distribution shapes, and therefore, it cannot provide uniformly reliable structures, nor
can a stress audit, based on safety factor margins alone, identify the weakest region. It cannot support
optimum performance design and risk analyses.

The proposed reliability method superimposes the deterministic design developed variables on the
first-order reliability method to surmount deterministic deficiencies and share reliability benefits. The
suggested universal normalization of observed and measured engineering data admits its application to
normal probability distribution techniques leading to the first-order reliability method. Normal probability
distribution techniques are the simplest to characterize, the most developed, the best known, and the
easiest to learn. Disparities resulting from the universal normalization of data with another assumed
distribution may be implemented into the reliability criterion as another modeling error.

All input and output developed design data and parameters based on probability distributions must
be statistically characterized with explicitly defined mean, standard deviation, and range factor. Techniques
for combining and processing them are presented and illustrated. The Mises criterion is used to combine
multiaxial applied stresses into a uniaxial stress to be compatible with the experimentally derived uniaxial
material strength. Resulting uniaxial variables are statistically derived through the well known error
propagation law.

A reliability design factor is introduced into the reliability criterion consisting of the NASA-
specified safety factors, and a disparity coefficient. The reliability design factor is solved from the
reliability criterion and is used similar to the deterministic safety factor. The disparity coefficient was noted
to converge to unity when the multidiscipline controlling parameters were optimized with structural sizing.
This unexpected reliability criterion role of optimizing multidiscipline distribution range factors with
payload performance should simplify and enhance trades. Several different applications are illustrated with
interesting results.

An effective probability range factor is also introduced which combines the applied stress tolerance
limit and test-derived reliability design factor to predict the total probability of the test-applied stress. It
provides another index for design acceptance. Selection criteria for standard reliability and supporting risk
management are discussed.

The proposed universal first-order reliability method has been demonstrated to be user-friendly,
requiring only basic knowledge of the simplest probability distribution, and it surmounts deterministic
deficiencies. It may be used to supplement current deterministic stress audits on semistatic structures and
provides uniformly reliable, high-performance, robust aerostructures, which reduce payload delivery costs
in support of affordable access-to-space.
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APPENDIX A

Combined Applied Stress

A condition for extending deterministic practices to the reliability method is that multiaxial applied
stress components employed in the Mises criterion must be statistically characterized, having the combined
mean, standard deviation, and probability range factor explicitly defined in equation (17) format. The
Mises criterion is a technique for combining local multiaxial stresses induced by components of random
acting external loads and generally producing a worst-on-worst case. Equation (15) represents worst-on-
worst case and is here recast as,

  FA = (CxLx)
2+(CyLy)

2+ (CzLz)
2– (CxLx)(CyLy)–(CxLx)(CzLz)

– (CyLy)(CzLz)+3( (CxyLxy)
2+(CxzLxz)

2+(CyzLyz)
2)

1
2

  , (A1)

where Li are the multiaxial loads tolerance limits, Ci are their stress form coefficients,

   Fi = CiLi = Ci (µLi
+Niσi)   , (A2)

and µLi
 are the load means.

These stresses are more appropriately combined by the well known error propagation law7 which
consists of expanding the functional relationship in a multivariable Taylor series about a design point
(mean) of a system. The mean of the Mises combined applied stresses is determined from

   
µ A = µ x

2
+µ y

2
+µ z

2
–µ xµ y–µ xµ z–µ yµ z+3 (µ xy

2
+µ xz

2
+µ yz

2
)

1
2   , (A3)

where the multiaxial means are

   µi = CiµLi
 . (A4)

The combined standard deviation is calculated from

   
σ A =

∂FA

∂Lx

σ x

2

+
∂FA

∂Ly

σ y

2

+
∂FA

∂Lz

σ z

2

+ 9
∂FA

∂Lxy

σ xy

2

      

   
+

∂FA

∂Lxz

σ xz

2

+
∂FA

∂Lyz

σ yz

2 1
2

  , (A5)

and the controlled standard deviation is
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σ A =

∂FA

∂Lx

Nxσ x

2

+
∂FA

∂Ly

Nyσ y

2

+
∂FA

∂Lz

Nzσ z

2

    

   
+ 9

∂FA

∂Lxy
Nxyσ xy

2

+
∂FA

∂Lxz
Nxzσ xz

2

+
∂FA

∂Lyz
Nyzσ y

2 1
2

  . (A6)

The probability range factor is calculated from equations (A5) and (A6)

   
NA =

σ A

σA

  , (A7)

and using equation (4), the coefficient of variation is

   η A =
σ A
µ A

  . (A8)

The partials of each term under the radical of equation (A1) are given by the chain rule,

  d w(Li)
dLi

= d w
dw

dw
dLi

= 1
2 w

dw
dLi

  ,

The normal partials are:

   ∂FA
∂Lx

=
Cx(2µ xCx–µ yCy–µ zCz)

2FA
  ,     

   ∂FA
∂Ly

=
Cy(2µ yCy–µ xCx–µ zCz)

2FA

   ∂FA
∂Lz

=
Cz(2µ zCz–µ xCx–µ yCy)

2FA
  , (A9)

and the shear partials are

   ∂FA
∂Lxy

=
3 Cxy

2 µ xy

FA
  ,    

   ∂FA
∂Lxz

=
3 Cxz

2 µ xz
FA

  ,    
   ∂FA

∂Lyz
=

3 Cyz
2 µ yz

FA
  . (A10)

All partials are evaluated at the system mean.

Applying equations (A3), (A5), and (17) provides the appropriate combined applied stress
tolerance limit of the system,

   FA
′ = µ A+NAσ A  , (A11)

or
   FA
′ = µ A(1 +NAη A)   . (A12)

The tolerance limit derived from the worst-on-worst method of equation (A1) should always be
larger and more conservative than the more optimum one provided by equations (A11) or (A12).

Because of the general application and routine nature of this technique, it is programmed here in
Quick Basic.
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'ERROR PROPAGATION METHOD; MISES CRITERION
DEFDBL A-Z
INPUT"NUMBER OF NORMAL STRESSES=",NS
DIM STATIC NSM(3),NSSD(3),NSNF(3),NSFD(3),NSC(3),XN(3),LNS(3)

FOR I=1 TO NS
PRINT "NORMAL LOAD MEAN(";I;")="
INPUT NSM(I)
PRINT"NORMAL LOAD STANDARD DEVIATION(";I;")="
INPUT  NSSD(I)
PRINT"NORMAL LOAD N-FACTOR(";I;")="
INPUT NSNF(I)
PRINT"NORMAL LOAD COEFFICIENT(";I;")="
INPUT NSC(I)
NEXT I

INPUT "NUMBER OF SHEAR STRESSES=",MS
DIM STATIC SSM(3),SSSD(3),SSNF(3),SSFD(3),SSC(3),XS(3),LSS(3)

FOR I=1 TO MS
PRINT "SHEAR LOAD MEAN(";I;")="
INPUT SSM(I)
PRINT "SHEAR LOAD STANDARD DEVIATION(";I;")="
INPUT SSSD(I)
PRINT "SHEAR LOAD N-FACTOR(";I;")="
INPUT SSNF(I)
PRINT"SHEAR LOAD COEFFICIENT(";I;")="
INPUT SSC(I)
NEXT I
FOR I=1 TO NS:XN(I)=NSM(I)*NSC(I):NEXT I
FOR I=1 TO MS:XS(I)=SSM(I)*SSC(I):NEXT I

'CALCULATION OF SYSTEM MEAN
S1=0:FOR I=1 TO NS:S1=S1+XN(I)^2:NEXT I
S2=0:FOR I=1 TO MS:S2=S2+XS(I)^2:NEXT I
MZ=SQR(S1-XN(1)*XN(2)-XN(1)*XN(3)-X(2)*XN(3)+3*S2)

'CALCULATION OF DERIVATIVES
NSFD(1)=NSC(1)*(2*XN(1)-XN(2)-XN(3))/2/MZ
NSFD(2)=NSC(2)*(2*XN(2)-XN(1)-XN(3))/2/MZ
NSFD(3)=NSC(3)*(2*XN(3)-XN(1)-XN(2))/2/MZ
FOR I=1 TO MS:SSFD(I)=3*XS(I)*SSC(I)/MZ:NEXT I

'CALCULATION OF SUM OF SQUARES OF NORMAL STRESSES
S3=0:S4=0:FOR I=1 TO NS
S3=S3+(NSFD(I)*NSSD(I))^2
S4=S4+(NSNF(I)*NSFD(I)*NSSD(I))^2
NEXT I

'CALCULATION OF SUM OF SQUARES OF SHEAR STRESSES
S5=0:S6=0: FOR I=1 TO MS
S5=S5+(SSFD(I)*SSSD(I))^2
S6=S6+(SSNF(I)*SSFD(I)*SSSD(I))^2
NEXT I

'CALCULATION OF SYSTEM STANDARD AND EFFECTIVE DEVIATIONS
SZ=SQR(S3+S5):SN=SQR(S4+S6)
NE=SN/SZ



31

'CALCULATION OF SYSTEM COEFFICIENT OF VARIATION
ETA=SZ/MZ

'CALCULATION OF SYSTEM TOLERANCE LIMIT
TL=MZ+(NE*SZ)

'CALCULATION OF MISES FUNCTION
FOR I=1 TO NS
LNS(I)=(NSC(I)*(NSM(I)+NSNF(I)*NSSD(I)))^2
NEXT I
FOR I=1 TO MS
LSS(I)=(SSC(I)*(SSM(I)+SSNF(I)*SSSD(I)))^2
NEXT I
FM1=0:FOR I=1 TO NS
FM1=FM1+LNS(I):NEXT I
FM2=0:FOR I=1 TO MS
FM2=FM2+LSS(I):NEXT I
FM= SQR(FM1+3*FM2)

PRINT  "COMBINED APPLIED STRESSS =";FM
PRINT "MEAN =";MZ
PRINT "STANDARD DEVIATION ="SZ
PRINT "EFFECTIVE N =";NE
PRINT  "COEFFICIENT OF VARIATION =";ETA
PRINT  "TOLERANCE LIMIT =";TL
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APPENDIX B

MDOF Loads Formatting

Because input environments to response analysis are time-dependent and statistically characterized,
the induced load output is also time-dependent and of a statistical nature. The response histories at select
grid points are illustrated in figure B1, in which a specific time event may produce a maximum internal
load for a degree of freedom at one grid point only. Other time events produce maximum loads at other
grid points as shown. Where a maximum internal load response is identified at a grid point, the free-body
diagram of the included substructure experiencing that maximum response is constructed with the
influence of all time-consistent loads acting along the total system.

V1

V3

V5

V7

Lx6

Lx4

Lx1

t

t

t

grid 
points

t=1  t=2      t=3

forcing 
functions

Figure B1.  Time-dependent response.

This computational process for designing different parts through time-consistent and statistically
dispersed loads is repeated for each substructure at each unique event time, producing the maximum load
response. The end product of the structural response to environmental excitations is a set of maximum
design loads, or “limit loads,” and event times for all the system substructures and critical regions.
Common practice is to provide response limit loads in deterministic single value form. The reliability
method requirement is to format the deterministic limit load into its tolerance limit parameters of equations
(7) and (8).

Current single value response loads consist of a time-consisting set of loads acting along the total
structural system with gains gi influencing the limit load at some grid point 1 along an x-axis,

Lx1 =  g1(µ1+N1σ1)+g2(µ2+N2σ2)+g3(µ3+N3σ3)+ ....   . (B1)

Collecting terms from equation (B1) reduces the load response to the sum of the combined mean and the
combined variation terms,

    
Lx1 = gi µ i∑

i = 1

n

+ gi Ni σi∑
i = 1

n

  , (B2)

where the second term reflects the worst-on-worst input-output process and does not conform to the
statistical rss output rule of equation (3) to properly define the load tolerance limit output,

    
Lx1 = gi µ i∑

i = 1

n

+ gi Ni σi
2∑

i = 1

n
1
2

  . (B3)
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One possible and direct process for obtaining the appropriate expression of equation (B3) with
existing software is to first compute the limit load with its unique set of conditions, and, as currently
practiced, to provide results of equation (B2). Then compute the normal limit load (no dispersions),

    
Fx1 = gi µ i∑

i = 1

n

  , (B4)

and subtract it from equation (B2). Compute the effective response variance through a subroutine,

    
σ x1

2
= giσi

2∑
i = 1

n

  , (B5)

and determine the effective probability range factor from

    
Nx1

2
=

Lx1– Lx1
2

giσi
2∑

i = 1

n
  . (B6)


